Evaluation
Evaluation
- XPM Taskxpmir.evaluation.Evaluate(*, measures, dataset, retriever)
Bases:
xpmir.evaluation.BaseEvaluation
,experimaestro.core.objects.Task
Evaluate a retriever
- measures: List[xpmir.measures.Measure] = [Config[xpmir.measures.measure], Config[xpmir.measures.measure], Config[xpmir.measures.measure], Config[xpmir.measures.measure], Config[xpmir.measures.measure]]
List of metrics
- aggregated: Pathgenerated
Path for aggregated results
- detailed: Pathgenerated
Path for detailed results
- dataset: datamaestro_text.data.ir.Adhoc
The dataset for retrieval
- retriever: xpmir.rankers.Retriever
The retriever to evaluate
Metrics
Metrics are backed up by the module ir_measures
- XPM Configxpmir.measures.Measure(*, identifier, rel, cutoff)
Bases:
datamaestro_text.data.ir.Measure
Mirrors the ir_measures metric object
- identifier: str
main identifier
- rel: int = 1
minimum relevance score to be considered relevant (inclusive)
- cutoff: int
Cutoff value
List of defined measures
- xpmir.measures.AP = Config[xpmir.measures.measure]
Average precision metric
- xpmir.measures.P = Config[xpmir.measures.measure]
Precision at rank
- xpmir.measures.RR = Config[xpmir.measures.measure]
Reciprocical rank
- xpmir.measures.nDCG = Config[xpmir.measures.measure]
Normalized Discounted Cumulated Gain
Measures can be used with the @ operator. Exemple:
from xpmir.measures import AP, P, nDCG, RR
from xpmir.evaluation import Evaluate
Evaluate(measures=[AP, P@20, nDCG, nDCG@10, nDCG@20, RR, RR@10], ...)